



# Bachelor/Master Thesis Event-based Vision for End-to-end VR Avatar Reconstruction

## Problem description

The proposed project explores the capability of using a novel vision sensor (i.e. eventbased/frameless camera) for VIRTOOAIR: Virtual Reality Toolbox for Avatar Intelligent Reconstruction. VIRTOOAIR focuses on designing and developing a Deep Learning framework for improved avatar representations in immersive collaborative virtual environments. There have been substantial efforts in designing end-to-end frameworks for reconstructing a full 3D mesh of a human body from a single RGB image. However, these solutions all need to: a) construct or learn a camera model, b) have available keypoints information, and c) segment / pre-process RGB data in order to extract the kinematics of the body in the field-of-view. Typical approaches offer a rich and complex representation of such quantities, with the price of increase latency. We propose the use of a novel camera type as input to an end-to-end reconstruction framework, namely a Dynamic Vision Sensor (DVS), which will allow the system to "go away from frames". Similar to photoreceptors in the human retina, a single DVS pixel (receptor) can generate events in response to a change of detected illumination. Events encode dynamic features of the scene, e.g. moving objects, using a spatiotemporal set of events. Since DVS sensors drastically reduce redundant pixels (e.g. static background features) and encode objects in a frameless fashion with high temporal resolution (about 1 µs), it is well suited for fast motion analyses and tracking. Such an input can be used to replace the RGB input used in the VIRTOOAIR end-to-end infrastructure. The goal is to explore, how such low-latency input can improve the overall response time of the end-to-end reconstruction.

## <u>Tasks</u>

- Get familiar with the DVS sensor and its programming model.
- Investigate the design and usage of the existing VIRTOOAIR end-to-end reconstruction framework and existing code base.
- Design and implement a novel algorithm to interface the event-based data with the endto-end reconstruction framework.
- Design experiment for testing and evaluating the implementation versus the RGB implementation (i.e. latency, accuracy).

## Required skills

Strong programming experience (Python), good mathematical skills, machine vision experience.

## Preferred field of study

BA/MA Computer Science, BA/MA Mechatronics (Robotics)

Contact person:

Prof. Thomas Grauschopf – thomas.grauschopf@thi.de Dr. Cristian Axenie – axenie@thi.de